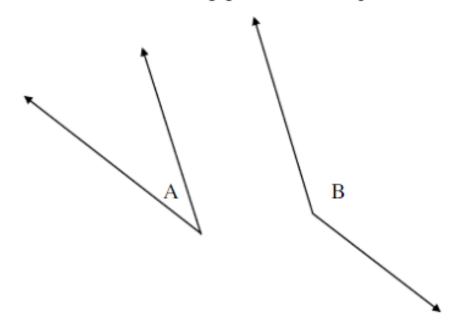

<u>Group 1</u>

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1$ and $\angle 3$ are Supplementary

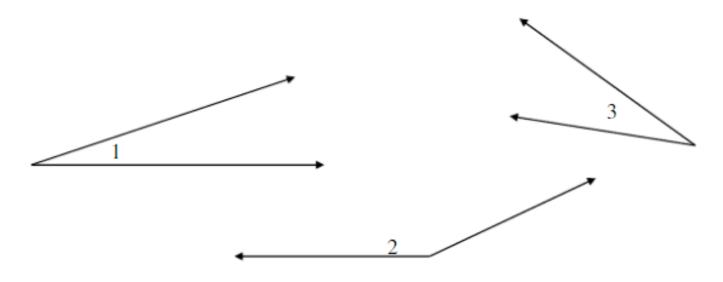


STATEMENTS	REASONS
$\angle 2 \cong \angle 3$	Given
m∠2 ≅ m∠3	Definition of $\cong \angle's$
$\angle 1 \& \angle 2$ are supplementary	Linear Pair Theorem
m∠1 + m∠2 = 180°	Definition of Supplementary ∠'s
m∠1 + m∠3 = 180°	Substitution
∠1 and ∠ 3 are Supplementary	Definition of Supplementary ∠'s

Group 2

Given: $m \angle A = 60^\circ$, $m \angle B = m2 \angle A$

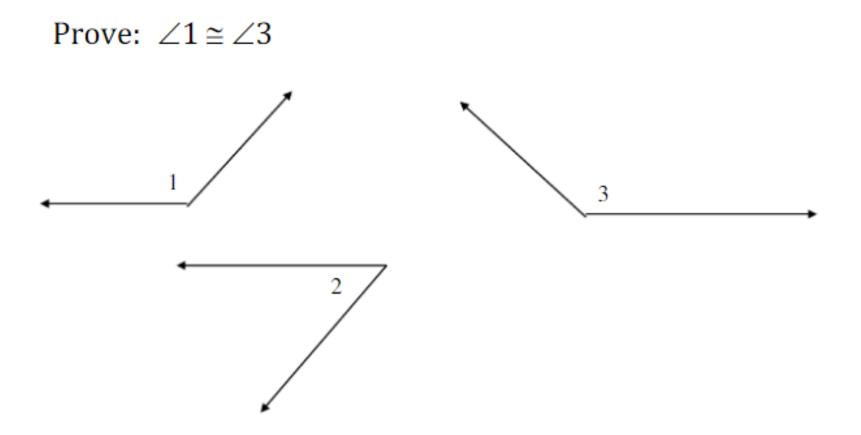
Prove: $\angle A \& \angle B$ are supplementary



STATEMENTS	REASONS
m∠A = 60°, m∠B=m2∠A	Given
m∠B=2(60°)	Substitution
m∠B=120°	Simplify
$m \angle A + m \angle B = 60^{\circ} + 120^{\circ}$	Addition Property of Equality
$m \angle A + m \angle B = 180^{\circ}$	Simplify
∠A & ∠B are supplementary	Definition of Supplementary \angle 's

<u>Group 3</u>

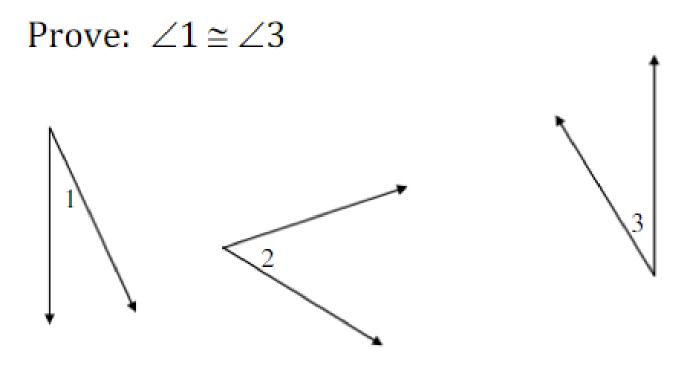
Given: $\angle 1 \& \angle 2$ are supplementary $\angle 1 \cong \angle 3$


Prove: $\angle 2 \& \angle 3$ are supplementary

STATEMENTS	REASONS
$\angle 1 \& \angle 2$ are supplementary	Given
$\angle 1 \cong \angle 3$	Given
m∠1 + m∠2 = 180°	Definition of Supplementary \angle 's
$m \angle 1 = m \angle 3$	Definition of $\cong \angle$'s
m∠3 + m∠2 = 180°	Substitution
$\angle 2 \& \angle 3$ are supplementary	Definition of Supplementary \angle 's

Group 4

Given: $\angle 1 \& \angle 2$ are supplementary $\angle 2 \& \angle 3$ are supplementary


STATEMENTS

REASONS

∠1 & ∠2 are supplementary ∠2 & ∠3 are supplementary	Given
$m \angle 1 + m \angle 2 = 180^{\circ}$ $m \angle 2 + m \angle 3 = 180^{\circ}$	Definition of Supplementary ∠'s
$m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	Substitution
$m \angle 2 = m \angle 2$	Reflexive Property
m∠1 = m∠3	Subtraction Property of Equality
$\angle 1 \cong \angle 3$	Definition of $\cong \angle's$

<u>Group 5</u>

Given: $\angle 1 \& \angle 2$ are complementary $\angle 2 \& \angle 3$ are complementary

STATEMENTS

REASONS

∠1 & ∠2 are complementary ∠2 & ∠3 are complementary	Given
$m \angle 1 + m \angle 2 = 90^{\circ}$ $m \angle 2 + m \angle 3 = 90^{\circ}$	Definition of Complementary ∠'s
$m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	Substitution
$m \angle 2 = m \angle 2$	Reflexive Property
$m \angle 1 = m \angle 3$	Subtraction Property of Equality
$\angle 1 \cong \angle 3$	Definition of $\cong \angle's$