Two-Column Proofs

1. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Statement	Reason
1. $\overline{\mathrm{YX}} \cong \overline{\mathrm{WX}}$	1.
2. $\overline{\mathrm{ZX}}$ bisects $\angle \mathrm{YXW}$	2.
3. $\angle \mathrm{YXZ} \cong \angle \mathrm{WXZ}$	3.
4. $\overline{\mathrm{XZ}} \cong \overline{\mathrm{XZ}}$	4.
5. $\Delta \mathrm{YXZ} \cong \Delta \mathrm{WXZ}$	5.
6. $\overline{\mathrm{YZ}} \cong \overline{\mathrm{WZ}}$	6.

Choose a reason from this list:

Definition of angle bisector
Definition of congruent triangles or CPCTC
Given
Given
Reflexive property of congruence
Side-Angle-Side congruence

Two-Column Proofs (Continued)

2. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given:

$$
\begin{aligned}
& \overline{\mathrm{AD}} \cong \overline{\mathrm{BC}} \\
& \overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}
\end{aligned}
$$

Prove: $\quad \overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$

Statement	Reason	
1. $\overline{\mathrm{AD}} \cong \overline{\mathrm{BC}}$	1.	
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$	2.	
3. $\overline{\mathrm{AC}} \cong \overline{\mathrm{AC}}$	3.	
4. $\triangle \mathrm{CAD} \cong \triangle \mathrm{ACB}$	4.	
5. $\angle \mathrm{DAC} \cong \angle \mathrm{BCA}$	5.	
6. $\overline{\mathrm{AD}} \\| \overline{\mathrm{BC}}$	6.	

Choose a reason from this list:
Definition of congruent triangles
Given
Given
If alternate interior angles are congruent then the lines are parallel.
Reflexive property of congruence
Side-Side-Side congruence

Two-Column Proofs (Continued)

3. Complete the following proof by filling in each statement. Remember to mark all given information on the diagram.

Given: ABCD is a parallelogram
Prove: $\triangle \mathrm{ABE} \cong \Delta \mathrm{CDE}$

Statement	Reason
1.	1. Given
2.	2. In a parallelogram, opposite sides are congruent.
3.	3. In a parallelogram, diagonals bisect each other.
4.	4. In a parallelogram, diagonals bisect each other.
5.	5. Side-Side-Side congruence

Choose a statement from this list:

$$
\begin{aligned}
& \overline{\mathrm{AE}} \cong \overline{\mathrm{EC}} \\
& \mathrm{ABCD} \text { is a parallelogram } \\
& \overline{\mathrm{DE}} \cong \overline{\mathrm{~EB}} \\
& \Delta \mathrm{ABE} \cong \Delta \mathrm{CDE} \\
& \overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}
\end{aligned}
$$

Two-Column Proofs (Continued)

4. Fill-in the statements and reasons for the following proof.

Given: $\overline{\mathrm{DE}} \| \overline{\mathrm{AV}}$

$$
\Delta \mathrm{DAV} \cong \Delta \mathrm{EVA}
$$

Prove: DAVE is an isosceles trapezoid

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Possible Statements	Possible Reasons	
DAVE is a trapezoid	Given	
$\overline{\mathrm{DA}} \cong \overline{\mathrm{EV}}$	Definition of isosceles trapezoid	
DAVE is an isosceles trapezoid	Given	
$\Delta \mathrm{DAV} \cong \Delta \mathrm{EVA}$	Definition of trapezoid	
$\overline{\mathrm{DE}} \\| \overline{\mathrm{AV}}$	Definition of congruent triangles	

Two-Column Proofs (Continued)

5. Complete the following proof.

Given: $\overline{\mathrm{MR}}$ is a diameter of $\odot \mathrm{O}$
$\overline{\mathrm{AR}} \cong \overline{\mathrm{MK}}$

Prove: $\triangle \mathrm{MAR} \cong \Delta \mathrm{RKM}$

Statement	Reason
1. $\overline{\mathrm{MR}}$ is a diameter of $\odot \mathrm{O}$	1.
2. $\overparen{\mathrm{MAR}}$ and $\overparen{\mathrm{MKR}}$ are semicircles	2.
3. $\angle \mathrm{MAR}$ and $\angle \mathrm{MKR}$ are right angles	3.
4. $\angle \mathrm{MAR} \cong \angle \mathrm{MKR}$	4.
5. $\overline{\mathrm{MR}} \cong \overline{\mathrm{MR}}$	5.
6. $\overline{\mathrm{AR}} \cong \overline{\mathrm{MK}}$	6.
7. $\triangle \mathrm{MAR} \cong \triangle \mathrm{RKM}$	7.

Choose from this list of reasons.

An angle inscribed in a semicircle is a right angle.
All right angles are congruent
Definition of a semicircle
Given
Given
Hypotenuse-Leg Congruence
Reflexive property of congruence

Answers: 1. 1. Given
2. Given
3. Definition of angle bisector
4. Reflexive property of congruence
5. Side-angle-side triangle congruence
6. Definition of congruent triangles
2. 1. Given
2. Given
3. Reflexive property of congruence
4. Side-side-side triangle congruence
5. Definition of congruent triangles
6. If alternate interior angles are congruent then the lines are parallel.
3. 1. ABCD is a parallelogram
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$
$\left.\begin{array}{ll}\text { 3. } & \overline{\mathrm{AE}} \cong \overline{\mathrm{EC}} \\ \text { 4. } & \overline{\mathrm{DE}} \cong \overline{\mathrm{EB}}\end{array}\right\}$ Note: lines 3 and 4 are interchangeable
5. $\quad \triangle \mathrm{ABE} \cong \triangle \mathrm{CDE}$
4. Statement

Reason

1. $\overline{\mathrm{DE}} \| \overline{\mathrm{AV}} \quad$ 1. Given
2. DAVE is a trapezoid
3. Definition of trapezoid
4. $\triangle \mathrm{DAV} \cong \triangle \mathrm{EVA}$
5. Given
6. $\overline{\mathrm{DA}} \cong \overline{\mathrm{EV}}$
7. Definition of cong. tri.
8. DAVE is an isosceles trapezoid
9. Definition of isosceles trapezoid
10. 11. Given
1. Definition of a semicircle
2. An angle inscribed in a semicircle is a right angle
3. All right angles are congruent
4. Reflexive property of congruence
5. Given
6. Hypotenuse-Leg Congruence
