Two-Column Proofs

1. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Prove:

 $\overline{YX}\cong\overline{WX}$

 $\overline{\mathrm{YZ}} \cong \overline{\mathrm{WZ}}$

 \overline{ZX} bisects $\angle YXW$

Statement	Reason
1. $\overline{\mathbf{YX}} \cong \overline{\mathbf{WX}}$	1.
2. \overline{ZX} bisects $\angle YXW$	2.
3. $\angle YXZ \cong \angle WXZ$	3.
4. $\overline{\mathrm{XZ}} \cong \overline{\mathrm{XZ}}$	4.
5. $\Delta YXZ \cong \Delta WXZ$	5.
6. $\overline{\mathrm{YZ}} \cong \overline{\mathrm{WZ}}$	6.

Choose a reason from this list:

Definition of angle bisector Definition of congruent triangles or CPCTC Given Given Reflexive property of congruence Side-Angle-Side congruence

Lesson Plan: Different Methods of Proof Page 1

2. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given:	$\overline{AD} \cong \overline{BC}$	A
	$\overline{AB} \cong \overline{DC}$	
Prove:	$\overline{AD} \ \overline{BC}$	
	I	D C

Statement	Reason
1. $\overline{AD} \cong \overline{BC}$	1.
2. $\overline{AB} \cong \overline{DC}$	2.
3. $\overline{AC} \cong \overline{AC}$	3.
4. $\Delta CAD \cong \Delta ACB$	4.
5. $\angle DAC \cong \angle BCA$	5.
$6. \ \overline{\text{AD}} \ \overline{\text{BC}}$	6.

Choose a reason from this list:

Definition of congruent triangles Given Given If alternate interior angles are congruent then the lines are parallel. Reflexive property of congruence Side-Side congruence

3. Complete the following proof by filling in each statement. Remember to mark all given information on the diagram.

Given: ABCD is a parallelogram

Prove: $\triangle ABE \cong \triangle CDE$

Statement	Reason
1.	1. Given
2.	2. In a parallelogram, opposite sides are congruent.
3.	3. In a parallelogram, diagonals bisect each other.
4.	4. In a parallelogram, diagonals bisect each other.
5.	5. Side-Side-Side congruence

Choose a statement from this list:

 $\overline{AE} \cong \overline{EC}$ ABCD is a parallelogram $\overline{DE} \cong \overline{EB}$ $\Delta ABE \cong \Delta CDE$ $\overline{AB} \cong \overline{DC}$

4. Fill-in the statements and reasons for the following proof.

Given: $\overline{DE} \parallel \overline{AV}$ $\Delta DAV \cong \Delta EVA$

Prove: DAVE is an isosceles trapezoid

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Possible Statements	Possible Reasons
DAVE is a trapezoid	Given
$\overline{\mathrm{DA}}\cong\overline{\mathrm{EV}}$	Definition of isosceles trapezoid
DAVE is an isosceles trapezoid	Given
$\Delta DAV \cong \Delta EVA$	Definition of trapezoid
$\overline{\text{DE}} \parallel \overline{\text{AV}}$	Definition of congruent triangles

Lesson Plan: Different Methods of Proof Page 4

5. Complete the following proof.

Given: $\overline{\text{MR}}$ is a diameter of \bigcirc O $\overline{\text{AR}} \cong \overline{\text{MK}}$

Prove: $\Delta MAR \cong \Delta RKM$

Statement	Reason
1. \overline{MR} is a diameter of \bigcirc O	1.
2. \widehat{MAR} and \widehat{MKR} are semicircles	2.
3. \angle MAR and \angle MKR are right angles	3.
4. \angle MAR $\cong \angle$ MKR	4.
5. $\overline{\mathrm{MR}} \cong \overline{\mathrm{MR}}$	5.
6. $\overline{\text{AR}} \cong \overline{\text{MK}}$	6.
7. $\Delta MAR \cong \Delta RKM$	7.

Choose from this list of reasons.

An angle inscribed in a semicircle is a right angle. All right angles are congruent Definition of a semicircle Given Hypotenuse-Leg Congruence Reflexive property of congruence Answers: 1.

- Given
 Given
- 3. Definition of angle bisector
- 4. Reflexive property of congruence
- 5. Side-angle-side triangle congruence
- 6. Definition of congruent triangles
- 2. 1. Given
 - 2. Given
 - 3. Reflexive property of congruence
 - 4. Side-side triangle congruence
 - 5. Definition of congruent triangles
 - 6. If alternate interior angles are congruent then the lines are parallel.
- 3. 1. ABCD is a parallelogram
 - 2. $\overline{AB} \cong \overline{DC}$
 - 3. $\overline{AE} \cong \overline{EC}$
 - AL = $\frac{DC}{DE} \cong \frac{DC}{EB}$ Note: lines 3 and 4 are interchangeable
 - 4. $DE \cong EB \int$ 5. $\triangle ABE \cong \triangle CDE$

3. $\Delta DAV \cong \Delta EVA$

Reason

1. Given

- 2. DAVE is a trapezoid 2. Definition of trapezoid
 - 3. Given
- 4. $\overline{\text{DA}} \cong \overline{\text{EV}}$

 $\frac{\text{Statement}}{1.\,\overline{\text{DE}}} \| \overline{\text{AV}} \|$

4. Definition of cong. tri.5. Definition of isosceles

trapezoid

- 5. DAVE is an isosceles trapezoid
- 5. 1. Given

4.

- 2. Definition of a semicircle
- 3. An angle inscribed in a semicircle is a right angle
- 4. All right angles are congruent
- 5. Reflexive property of congruence
- 6. Given
- 7. Hypotenuse-Leg Congruence